The set-up of an high temperature superconductor radio-frequency SQUID microscope for magnetic nanoparticle detection

نویسندگان

  • M Schmidt
  • H-J Krause
  • M Banzet
  • D Lomparski
  • J Schubert
  • W Zander
  • Y Zhang
  • R Akram
  • M Fardmanesh
چکیده

SQUID (superconducting quantum interference device) microscopes are versatile instruments for biosensing applications, in particular for magnetic nanoparticle detection in immunoassay experiments. We are developing a SQUID microscope based on an HTS rf SQUID magnetometer sensor with a substrate resonator. For the cryogenic set-up, a configuration was realized in which the cryostat is continuously refilled and kept at a constant liquid nitrogen level by an isolated tube connection to a large liquid nitrogen reservoir. The SQUID is mounted on top of a sapphire finger, connected to the inner vessel of the stainless steel cryostat. The vacuum gap between cold SQUID and room temperature sample is adjusted by causing precise approach of a 50 μm thin sapphire window using a single fine thread wheel. We investigated possible sensing tip configurations and different sensor integration techniques in order to achieve an optimized design. A new scheme of coupling the rf SQUID from its back to a SrTiO3 substrate resonator was adopted for the purpose of minimization of the sensor-to-sample spacing. By SQUID substrate thinning and washer size reduction, the optimum coupling conditions for back coupling were determined for different rf SQUID magnetometers prepared on LaAlO3 and SrTiO3 substrates. The SQUID microscope system is characterized with respect to its spatial resolution and its magnetic field noise. The SQUID microscope instrument will be used for magnetic nanoparticle marker detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

Investigation of structural effects of Bi nanoparticle addition on HTSC- BSCCO-2223,Through The sol-gel Method

In this research, the influence of Bi nanoparticles addition on the high temperature superconductor BSCCO-2223 was studied. For this purpose, the samples were synthesized by the conventional sol-gel method. Then, the Bi nanoparticles with x= 0.00, 0.03, 0.06, 0.12wt% was added to BSCCO-2223. The structural characterization of all the samples was done by X-ray diffraction pattern (XRD). Also, th...

متن کامل

Noise Equivalent Power Optimization of Graphene- Superconductor Optical Sensors in the Current Bias Mode

In this paper, the noise equivalent power (NEP) of an optical sensor based ongraphene-superconductor junctions in the constant current mode of operation has beencalculated. Furthermore, the necessary investigations to optimize the device noise withrespect to various parameters such as the operating temperature, magnetic field, deviceresistance, voltage and current bias have been presented. By s...

متن کامل

High-Tc SQUID gradiometer system for magnetocardiography in an unshielded environment

We set up an electronic gradiometer for magnetocardiography (MCG) in an unshielded environment. The electronically balanced gradiometer consists of high-temperature radio-frequency superconducting quantum interference device (rf SQUID) magnetometers. The rf SQUID magnetometers are arranged to form the electronic first-order, four-vector gradiometer, or second-order gradiometer. The output of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005